## Ergodic Theory - Week 9

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

## 1 Classifying measure preserving systems

**P1.** (a) Show that if the system  $(X, \mathcal{B}, \mu, T)$  is mixing, then for all strictly increasing sequences of positive integers  $n_k$  and any  $A \in \mathcal{B}$  with  $\mu(A) > 0$ , we have

$$\mu\left(\bigcup_{k=1}^{+\infty} T^{-n_k} A\right) = 1.$$

(b) Show that if the system  $(X, \mathcal{B}, \mu, T)$  is weak-mixing, then for all sequences of positive integers  $n_k$  with positive density and any  $A \in \mathcal{B}$  with  $\mu(A) > 0$ , we have

$$\mu\left(\bigcup_{k=1}^{+\infty} T^{-n_k} A\right) = 1.$$

(c) \*\* Show that the converse in part (b) holds as well.

**Hint:** Use the fact that if a system has an eigenfunction, then it has a factor map to a rotation system.

**P2.** (a) Let  $(X, \mathcal{B}, \mu, T)$  be a weakly-mixing system. Show that for all  $a \in (0, 1)$  and any  $f \in L^{\infty}(X)$ , we have that

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i n a} f(T^n x) = 0$$

for almost all  $x \in X$ .

Hint: See also exercise 1 in Week 4.

(b) Let  $(X, \mathcal{B}, \mu, T)$  be a mixing system. Show that for all  $f \in L^{\infty}(X)$ , we have

$$\lim_{N \to +\infty} \left\| \frac{1}{N} \sum_{n=0}^{N-1} T^{2^n} f - \int f d\mu \right\|_{L^2(X)} = 0.$$

**Hint**:  $|2^n - 2^m|$  is "large" for "almost all" pairs (n, m).

**P3.** A measure preserving system  $(X, \mathcal{B}, \mu, T)$  is called *rigid* if there is an increasing sequence  $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$  such that for all  $f \in L^2(X, \mathcal{B}, \mu)$ , we have  $||f \circ T^{n_k} - f||_2 \to 0$  as  $k \to \infty$ .

(a) Prove that  $(X, \mathcal{B}, \mu, T)$  is rigid if and only if there is an increasing sequence  $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ , a dense subset  $V \subseteq L^2(X, \mathcal{B}, \mu)$  such that for all  $f \in V$ ,  $||f \circ T^{n_k} - f||_2 \to 0$  as  $k \to \infty$ .

(b) Suppose that  $(X, \mu, \mathcal{B}, T)$  has discrete spectrum. Prove that  $(X, \mu, \mathcal{B}, T)$  is rigid. **Hint:** Use part (a) for a suitable dense subspace  $V \subseteq L^2(X, \mathcal{B}, \mu)$ , and also use **P2** from the Exercise sheet 6.

1

(c) We call a system  $(X, \mathcal{B}, \mu, T)$  mildly mixing if it has no non-trivial rigid factors. Namely, there does not exist a factor map  $(X, \mathcal{B}, \mu, T) \to (Y, \mathcal{A}, \nu, S)$  such that the system  $(Y, \mathcal{A}, \nu, S)$  is rigid (and non-trivial).

Show that a mixing system is mildly mixing.

**P4.** Consider the system  $(\mathbb{T}^2, \mathcal{B}(\mathbb{T}^2), \mu, T)$  where  $\mu$  is the Haar measure in  $\mathbb{T}^2$  and T is the baker's map defined by

$$T(x,y) = (2x - \lfloor 2x \rfloor, \frac{y + \lfloor 2x \rfloor}{2}).$$

Prove that this map is a Bernoulli system.